Chapter 4 Electrical Principles

Radio Mathematics

Volts, Amps, Resistance / Impedance

- Can't see
- Use equations to describe
- Graphs are pictures of equations
- Two types of graphs that show the same data in two different ways

Rectangular Coordinates

- Graph is composed of two axis, horizontal (x) and vertical (y)
- The point (0,0) is called the origin
- Data point is identified as a (x,y) data pair

Polar Coordinates

- Graph is composed of a fixed point called a pole (analogous to origin)
- Data point (called a ray) is identified by a distance from the pole and an angle from the horizontal axis (counter clock wise is positive)
- Angles are measured in degrees and radians
 - One cycle / circle = 360 degrees = 2 π radians (1 radian ≈ 57.3°)

Convert from Rectangular to Polar

- Hyp = $\sqrt{(Adj)^2 + (Opp)^2}$
- $\theta = \tan^{-1} (Opp / Adj)$

Convert from Polar to Rectangular

- Radius (r) = Hyp
- Adj = $r * \cos \theta$
- Opp = $r * \sin \theta$

Complex numbers / coordinates

Imaginary numbers

$$\sqrt{36} = ?$$

$$\sqrt{36} = 6$$

$$\sqrt{(4*9)} = \sqrt{4} * \sqrt{9} = 2 * 3 = 6$$

$$\sqrt{-25} = ?$$

$$\sqrt{(25*-1)} = \sqrt{25} * \sqrt{-1} = 5 * \sqrt{-1}$$

- $\sqrt{-1}$ is defined as "imaginary number"
- Mathematicians use i, Electrical Engineers use j
 because "i" is used to indicate instantaneous current

Complex Coordinates

 Combine real & imaginary numbers (real + j imaginary)

Convert Rectangular <> Polar

Rectangular to Polar

• Hyp =
$$\sqrt{(Adj)^2 + (Opp)^2}$$

•
$$5 = \sqrt{(3)^2 + (4)^2}$$

- $\theta = \tan^{-1}(Opp / Adj)$
- $53.1^{\circ} = \tan^{-1}(4/3)$

Polar to Rectangular

- Adj = r * cos θ
- $3 = 4.2 * cos(-45^{\circ})$
- Opp = r * sin θ
- $-3 = 4.2 * \sin(-45^{\circ})$

Complex numbers Math

Add/Subtract - Use Rectangular form

- (a + j b) + (c + j d) = (a + c) + j (b + d)
- (2 + j3) + (4 + j1) = (6 + j4)

Multiply/Divide - Use Polar form

- $a \angle \theta_1 * b \angle \theta_2 = (a * b) \angle (\theta_1 + \theta_2)$
- $a \angle \theta_1 / b \angle \theta_2 = (a / b) \angle (\theta_1 \theta_2)$
- $6 \angle 45^{\circ} / 2 \angle 30^{\circ} = (6 / 2) \angle (45 30) = 3 \angle 15^{\circ}$

Electrical Principals

Electric and Magnetic fields

Introduced to E & M fields associated with antennas

RC and RL Time Constants

- Electrical energy
 - Can be detected as voltage differences between two points
 - Capacitors store and release electrical energy
 - Capacitors will resist a change in voltage
- Magnetic energy
 - Is detected by moving electrical charges (current)
 - Inductors store and release magnetic energy
 - Inductors will resist a change in current movement

Current / Magnetic field direction

- Electronics (Elect Engr) use "whole" or "conventional" current
 - Current flows positive $(+) \rightarrow$ negative (-)
 - Use "Right Hand rule" to determine North
- Physics use "electron" current

Current flows negative (-)→ positive(+)

Use "Left Hand rule" to determine North

Lines of Magnetic Flux

Time Constant

- RC circuit The time it takes to charge (or discharge) a capacitor (V_c) depends on the size of the resistor
- RL circuit The time it takes for current to increase (or decrease) through an inductor (i_L) also depends on the size of the resistor.

RC Circuit

- When charging a capacitor, $V_c(t) = E(1 e^{-\frac{t}{\tau}})$ where $\tau = RC$
- When discharging a capacitor, $V_{C}(t) = E(e^{-\frac{t}{\tau}})$
- e = 2.71828 (base for natural logarithms)

It takes approximately 5 time constants to charge to 99.3% (or discharge to 0.7%)

RL Circuit

- Building current through an inductor, $I_L(t) = \frac{E}{R} * (1 e^{-\frac{t}{\tau}})$ where $\tau = L/R$
- When disrupting current through an inductor, $I_L(t) = \frac{E}{R} * (e^{-\frac{t}{\tau}})$
- It takes approximately 5 time constants to charge to 99.3% (or discharge to 0.7%)

Phase Angle

- Phase Angle refers to time
 - -1 cycle of frequency x = 1/x seconds
 - $1 \text{ cycle} = 360^{\circ}$
 - Phase angle is measured between similar points on each waveform
- Resistors dissipate energy
 - voltage & current are "in phase"

Phase Angle

- Capacitors and Inductors store / release energy
 - Unlike in Resistors, voltage & current waveforms do NOT rise and fall together
- ELI the ICE man
 - Inductors voltage (E) leads current (I)
 - Capacitors current (I) leads voltage (E)

Voltage/Current Relationship in Capacitors

- Capacitors <u>resist</u> changes in voltage
- DC voltage / current
 - Physical example,
 filling a tank with air

AC Voltage/Current phase relationship in Capacitors

ICE - current LEADS voltage (V_C)

- voltage (V_C) <u>LAGS</u> current
- (current is reference) phase angle is -90°

Electric (field strength) energy is stored and released twice each cycle

- Max current at 0 volts
- 0 current at Maximum volts
- Current leads voltage (ICE)

Voltage/Current Relationship in Inductors

- Inductors <u>resist</u> changes in current
 - Physical example, flywheel
- Relationship between AC voltage and current (in an inductor) complements that in a capacitor
 - Stored Magnetic (field) energy is in phase with current

Back EMF (induced voltage) in Inductors

 is greatest when the magnetic field is changing the fastest

is generated with a polarity that opposes the

change in current

AC Voltage/Current phase relationship in Inductors

- ELI current LAGS voltage (V_L)
 - voltage(V_L) <u>LEADS</u> current
 - (current is reference) phase angle is +90°

Resistance versus Reactance

- Resistance is the opposition to the passage of (DC or AC) current (ohm Ω)
- Reactance is the opposition to the AC current flow through an inductor or capacitance
 - Inductive reactance
 - Capacitive reactance

Inductive Reactance

- Increases with increasing frequency
- $X_1 = 2\pi f L$

where

 X_L = reactance in ohms

f = frequency in hertz

L = inductance in henries

Capacitive Reactance

- Increases with decreasing frequency
- $X_C = 1/2\pi f C$

where

 X_C = reactance in ohms

f = frequency in hertz

C = capacitance in farads

Complex Impedance

- Impedance (Z) is composed of two components, resistance and reactance
- Reactance can be either inductive or capacitive
- Resistance and Reactance may be connected either in series or parallel

Series Circuit

 Current (I) is the same through both elements (R & X)

$$> I = I_R = I_X$$

Voltages (across the elements) are different (V_R & V_X)

$$\triangleright V_{ac} = V_R + V_X$$

Parallel Circuit

 Voltage (V_{ac}) is the same across both elements (R & X)

$$\triangleright V_{ac} = V_{R} = V_{X}$$

Currents (through each element) are different (I_R
 & I_X)

$$> | = |_R + |_X$$

Complex Impedance

The phase relationship between the current (I) and voltage (for the whole circuit, V_{ac}) can be between 0° and $\pm 90^{\circ}$

- The phase angle depends on the relative amounts of resistance and reactance
- The sign of the angle depends on the type of the reactive element
 - Inductive reactance produces a positive angle
 - Capacitive reactance produces a negative angle

Reduce multiple elements to one equivalent element

- Multiple resistors to one resistor
- Multiple reactive elements (capacitors / inductors) to one reactive element
 - Capacitors (-90°) and inductors (+90°) have opposite phase angles
 - Combining capacitors and inductors will result in a smaller TOTAL reactance (adding the negative and positive angles will cancel each other)
 - If the capacitors and inductors have EQUIVALENT reactive values, they will cancel each other (angle=0° thus X=0), resulting in only a resistive element (R)

Calculate Impedance

Calculate Reactance of 20 mH inductor at 10 kHz

- $X_1 = 2\pi f L$
- $X_L = 2 \times 3.14 \times (10 \times 10^3) \times (20 \times 10^{-3})$
- $X_1 = 1256\Omega$

Calculate Impedance

Since we aren't given a V_T , we assume I=1

- V_R = 1000v (voltage in phase with current)
- V_L = 1256v (voltage leads current by 90°, "ELI")

•
$$V_T = \sqrt{1000^2 + 1256^2} = 1605$$

•
$$\theta = \tan^{-1}\left(\frac{opp}{adj}\right) = \tan^{-1}\left(\frac{1256}{1000}\right) = 51.5^{\circ}$$

•
$$V_T = 1605 \angle 51.5^\circ$$

•
$$Z = \frac{V_T}{I} = \frac{1605 \angle 51.5^0}{1 \angle 0^0} = 1605 \angle 51.5^0 \Omega$$

Calculate Impedance

What if we would have had a 20,000 mF capacitor?

- $X_C = 1/(2\pi f C)$
- $X_C = 1/[2 \times 3.14 \times (10 \times 10^3) \times (20,000 \times 10^{-6})]$
- $X_C = 1/1256\Omega = 1256 \angle -90^\circ$
- voltage lags current by 90°
- OR current leads voltage by 90°, "ICE"
- $Z = 1605 \angle -51.5^{\circ} \Omega$

Calculating Impedances and Phase Angles - BASIC Rules

- Impedances in series add together
- Admittance is the reciprocal of impedance

$$Y = \frac{1}{Z}$$

- Admittances in parallel add together
- Inductive and capacitive reactance in series cancel

•
$$\frac{1}{i} = -j$$

Refresher

Conductivity (G) is the reciprocal of Resistance (R)

$$G = \frac{1}{R}$$
 units of siemens (S)

Susceptance (B) is the reciprocal of Reactance (Y)

B =
$$\frac{1}{Y}$$
 units of siemens (S)

Taking the reciprocal of an angle, changes its sign

$$37^{\circ} = \frac{1}{-37^{\circ}}$$
 and $-73^{\circ} = \frac{1}{73^{\circ}}$

Refresher (cont)

- Voltage determines the reference for phase angle
 - Current is the reference
 - If voltage LEADS current (ELI) ->
 Positive phase angle
 - If voltage LAGS current (ICE) ->
 Negative phase angle
 - Voltage LAGS current = current leads voltage

Reactive Power and Power Factor

- Power = Voltage x Current (DC circuit)
- Reactive Power = Voltage_{RMS} x Current_{RMS}
 - AC circuit, when voltage & current are in phase
- Apparent Power
 - Does not take into consideration phase angle
 - Expressed in units of volt-amperes (VA)
 - AKA reactive, nonproductive or wattless power (VAR)

Power Factor

- Apparent power = 250 V x 2 A = 500 VA
- Real power = $I^2 R = (2 A)^2 \times 75 \Omega = 300 W$

• PF =
$$\frac{Real}{Apparent}$$
 = $\frac{300 W}{500 VA}$ = 0.6

- Power Factor is calculated using phase angle (θ) between the current and voltage [PF= Cos (θ)]
 - PF = 1 when $\theta = 0^{\circ}$ (all apparent power is real power)
 - PF = 0 when θ = 90° (all apparent power is reactive power)

Resonant Circuits

- Circuits with different inductive and capacitive reactances
 - Series different voltages
 - Parallel different currents
- Circuit is said to be resonant when X_L = X_C
 - Series − V_C will cancel V_I, leaving only V_R
 - Parallel I_C will cancel I_I, leaving only I_R
- Calculation of Resonant frequency
 - \circ $X_L = X_C$
 - \circ 2 π f L = 1/2 π f C
 - O Resonant frequency $(f_r) = \frac{1}{2\pi \sqrt{LC}}$

Impedance of Resonant Series Circuits

Series Circuits

- Same current
- V_L is 180° out of phase with V_C

At resonant

- $V_L = V_C$
- Equal amounts of energy are stored in each component
- The energy being supplied will cause voltages across the inductor and capacitor to build to multiple times the source voltage
- \blacksquare X₁ cancels X_C, resulting in maximum current
- Voltage and current are in phase

Impedance of Resonant Parallel Circuits

Parallel Circuits

- Same voltage
- I_C is 180° out of phase with I_I

At resonant

- The energy being exchanged between the inductor and capacitor will result in large circulating current
- Total current from the generator is small
- Voltage (across the tank) is at maximum
- Voltage and current are in phase

Q and Bandwidth of Resonant Circuits

Practical components

- Can be represented as ideal components (inductor or capacitor) in series with a resistor
- That resistance dissipates some of the stored energy

Quality factor (Q)

- Represents how close to an ideal component is the practical component
- Q = $\frac{X}{R}$
- Ratio of how much energy is stored to how much energy is dissipated
- Energy losses of a capacitor is usually much less than that for an inductor

- Thus the Q of the inductor is usually the limiting factor of the Q of a resonant circuit
- The only way to raise the Q of an inductor or capacitor is by using components with less internal resistance

Q and Bandwidth of Resonant Circuits (cont)

- Resonant Circuit Bandwidth
 - Bandwidth of the frequency range where the voltage (or current) is no more than 3 dB (i.e. .707) below the peak
 - Also called the half-power (or -3 dB) bandwidth

$$-\Delta f = \frac{f_r}{Q}$$

 Δf = the half power bandwidth

 f_r = the resonant frequency of the circuit

Q =the circuit Q

Higher Q, the narrower the bandwidth (sharper)

Q and Bandwidth of Resonant Circuits (cont)

- Skin Effect and Q
 - As frequency increases
 - more of the current travels closer to the surface of the wire
 - the "effective" resistance of the wire increases
 - HF outer few thousandths of an inch
 - VHF & UHF outer few ten-thousandths

Magnetic Cores

- Inductors store magnetic energy, creating reactance
- Wire can be wound around various material
 - Air is relatively inefficient way to store magnetic energy
 - Magnetic material increases the storage of energy (and the inductance)
- Inductance is a function of
 - Number of turns of wire on the core
 - Core materials permeability (air = 1)

Magnetic Cores (cont)

- Select the core material carefully
 - Perform over a desired frequency range
 - Temperature stability
- Core shape
 - Affects magnetic field (shape around the inductor)
 - Magnetic field of one inductor can interact with nearby components (coupling)
 - Toroid cores reduce unwanted coupling by keeping the magnetic field contained in the "donut"

Magnetic Cores (cont)

Calculating Inductance

$$-L = \frac{A_L N^2}{10,000}$$

- Or number of turns $N = 100 \sqrt{\frac{L}{A_L}}$
- Each time the wire passes through the core, it counts as a turn
- Ferrite bead
 - Small core, slipped over component leads, often used as suppressors for VHF & UHF oscillations

Questions

